Click to view price, real time Inventory, Delivery \& Lifecycle Information ;

ASSR-601JV-500E

Broadcom Limited

SSR RELAY SPST-NO 10MA 0-1500V

Any questions, please feel free to contact us.
info@kaimte.com

Data Sheet

ASSR-601JV, ASSR-601JT
Automotive Photo MOSFET with R 2 Coupler ${ }^{\text {TM }}$ Isolation

Description

The Broadcom ${ }^{\circledR}$ ASSR-601JV/JT is a high-voltage Photo MOSFET that is designed for automotive applications. ASSR-601JV/JT consists of an AIGaAs infrared lightemitting diode (LED) input stage optically coupled to a highvoltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high-voltage MOSFETs. The Photo MOSFET turns on (contact closes) with a minimum input current of 7 mA through the input LED. The Photo MOSFET turns off (contact opens) with an input voltage of 0.4 V or less.

The ASSR-601JV/JT is equivalent to 1FormA Electromechanical Relays (EMR) and is available in 16-pin SOIC package.

The Broadcom R^{2} Coupler ${ }^{\text {TM }}$ provides reinforced insulation and reliability that delivers safe signal isolation critical in automotive and high temperature industrial applications.

Features

- Compact solid-state bidirectional signal switch
- Qualified to AEC-Q101 test guidelines
- Automotive temperature range:
- $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ for ASSR-601JV
- $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for ASSR-601JT
- Breakdown voltage, $\mathrm{BV}_{\text {DSs }}: 1500 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{DSS}}=250 \mu \mathrm{~A}$
- Avalanche rated MOSFETs
- Low off-state leakage:
$-\mathrm{l}_{\mathrm{OFF}}<1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DS}}=1000 \mathrm{~V}$ for ASSR-601JV
- $\mathrm{I}_{\mathrm{OFF}}<5 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DS}}=1000 \mathrm{~V}$ for ASSR-601JT
- On-resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<250 \Omega$ at $\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$
- Turn on time: $\mathrm{T}_{\mathrm{ON}}<4 \mathrm{~ms}$
- Turn off time: $\mathrm{T}_{\mathrm{OFF}}<0.5 \mathrm{~ms}$
- Package: 300 mil SO-16
- Creepage and clearance $\geq 8 \mathrm{~mm}$ (input-output)
- Creepage $>5 \mathrm{~mm}$ (between drain pins of MOSFETs)
- Safety and regulatory approvals:
- IEC/EN/DIN EN 60747-5-5
- Maximum working insulation voltage $1414 \mathrm{~V}_{\text {PEAK }}$
- $5000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 minute per UL1577
- CSA component acceptance

Applications

- Battery insulation resistance measurement/leakage detection
- BMS flying capacitor topology for sensing batteries

Functional Diagram

Truth Table

LED	Output
Off	Open
On	Close

Pin Description

Pin Number	Pin Name	Description
$1,2,6,7,8$	NC	No connection.
3	NC	Do not connect (internally connected to Pin 5).
4	AN	Anode.
5	CA	Cathode.
9,10	D2	Drain 2 (internally connected).
15,16	D1	Drain 1 (internally connected).

Ordering Information

Specify part number followed by option number.

Part Number	Option (RoHS Compliant)	Package	Surface Mount	Tape \& Reel	UL $5000 \mathrm{~V}_{\text {rms }}$ / 1 Minute Rating	IEC 60747-5-5 EN/DIN EN 60747-5-5	Quantity
ASSR-601JV	-000E	SO-16	X		X	X	45 per tube
	-500E		X	X	X	X	850 per reel
ASSR-601JT	-000E	SO-16	X		X	X	45 per tube
	-500E		X	X	X	X	850 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ASSR-601JT-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawings (SO-16)

NOTE: Dimensions in millimeters (inches).
NOTE:

1. Lead coplanarity $=0.10 \mathrm{~mm}$ (0.004 inches) maximum.
2. Floating lead protrusion $=0.254 \mathrm{~mm}$ (0.010 inches) maximum.
3. Mold Flash on each side $=0.127 \mathrm{~mm}$ (0.005 inches) maximum.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard J-STD-020 (latest revision).
NOTE: Non-halide flux should be used.

Regulatory Information

The ASSR-601JV and ASSR-601JT are approved by the following organizations:

UL/cUL	IEC/EN/DIN EN 60747-5-5
UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=5 \mathrm{kV}_{\text {RMS }}$ Approved under CSA Component Acceptance Notice \#5.	IEC 60747-5-5 EN 60747-5-5 DIN EN 60747-5-5

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-601JV/JT	Unit	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	8.3	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	8.3	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.5	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	>600	V	IEC 60695.

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1 For rated mains voltage $<600 \mathrm{~V}_{\mathrm{RMS}}$ For rated mains voltage $<1000 \mathrm{~V}_{\mathrm{RMS}}$		$\mathrm{I}-\mathrm{III}$	
I			

Absolute Maximum Ratings

All specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter			Symbol	Min.	Max.	Unit	Note
Storage Temperature			$\mathrm{T}_{\text {S }}$	-55	150	${ }^{\circ} \mathrm{C}$	
Operating Ambient Temperature			T_{A}	-40	125	${ }^{\circ} \mathrm{C}$	
Junction Temperature			T_{J}	-40	150	${ }^{\circ} \mathrm{C}$	
Input Current	Average		$\mathrm{I}_{\text {(avg) }}$	-	30	mA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
		(50\% duty	$\mathrm{I}_{\text {(surge) }}$	-	60	mA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Peak Transient Input Current			I_{FP}	-	1	A	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { duty cycle }=0.1 \% \end{aligned}$
Reversed Input Voltage			BV_{R}	-	6	V	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Power Dissipation			P_{IN}	-	100	mW	
Output Load Current			I_{0}	-	50	mA	
Output Avalanche Current			I_{AV}	-	0.6	mA	$\mathrm{t}_{\mathrm{m}}=1 \mathrm{~min},$ duty cycle $=0.1 \%$, cumulative of 5 mins over lifetime
Output Power Dissipation			Po	-	1000	mW	
Lead Soldering Cycle		Temperature		-	260	${ }^{\circ} \mathrm{C}$	
		Time		-	10	s	
Solder Reflow Temperature Profile			Recommended reflow condition as per JEDEC Standard J-STD-020 (latest revision).				

ESD Rating

Parameter	Level	Note
Human Body Model	$\mathrm{H} 2(2000 \mathrm{~V}<\mathrm{HBM} \leq 4000 \mathrm{~V})$	Per AEC Q101-001
Charge Device Model	$\mathrm{C} 4(750 \mathrm{~V}<\mathrm{CDM} \leq 1000 \mathrm{~V})$	Per AEC Q101-005

Recommended Operating Conditions

Parameter	Symbol	Device	Min.	Max.	Unit	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$		7	30	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$		-5	0.4	V	
Operating Temperature	T_{A}	ASSR-601JV	-40	105	${ }^{\circ} \mathrm{C}$	
		ASSR-601JT	-40	125	${ }^{\circ} \mathrm{C}$	
Continuous Load Voltage	Vo_{2}		-	1000	$\mathrm{~V}_{\mathrm{DC}}$	a
Load Current	I_{O}		-10	10	mA	

a. V_{O} is the voltage across output terminals, pins 9,10 and pins $15,16$.

Electrical Specifications (DC)

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.

Parameter	Symbol	Device	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Input Reverse Breakdown Voltage	V_{R}		5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Forward Voltage	V_{F}		1.25	1.55	1.85	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	
Output Withstand Voltage	$\left\|\mathrm{V}_{\text {O(OFF) }}\right\|$		1500	1700	-	V	$\mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	a, b
Output Leakage Current	$\mathrm{l}_{\text {O(OFF) }}$	ASSR-601JV	-	0.3	1000	nA	$\mathrm{V}_{\mathrm{O}}=1000 \mathrm{~V}$	4	a
		ASSR-601JT	-	0.3	5000	nA	$\mathrm{V}_{\mathrm{O}}=1000 \mathrm{~V}$	4	a
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		-	190	-	pF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	7	a
Output Resistance	R_{ON}		-	100	300	Ω	$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$	8	
			-	100	250	Ω	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	8	

a. Device is in OFF state with $\mathrm{V}_{\mathrm{F}} \leq 0.4 \mathrm{~V}$.
b. Per AEC-Q101, device performance is demonstrated with high temperature reverse bias stress at $1200 \mathrm{~V}(80 \%$ of rated voltage).

Switching Specifications (AC)

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Turn-On Time	T_{ON}	-	0.8	4.0	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$	$9,11,13$	
		-	0.3	1.0	ms	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$		
Turn-Off Time	$\mathrm{T}_{\mathrm{OFF}}$	-	0.05	0.5	ms	$\mathrm{~V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$	10,12, 13	

Package Characteristics

Unless otherwise stated, all minimum/maximum specifications are over recommended operating conditions. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage $^{\mathrm{a}}$	$\mathrm{V}_{\mathrm{ISO}}$	5000	-	-	$\mathrm{V}_{\mathrm{RMS}}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}_{\mathrm{m}}=1$ minute; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	b, c	
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	10^{9}	10^{14}	-	Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=1000 \mathrm{~V}_{\mathrm{DC}}$	b	
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.6	-	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}_{\mathrm{DC}}$		b

a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.
b. Device considered a two-terminal device: pins 1 to 8 shorted together, and pins 9, 10, 15, and 16 shorted together.
c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 second.

Typical Characteristic Curves

Figure 1: LED Forward Current vs LED Forward Voltage

Figure 3: Output Withstand Voltage vs Ambient Temperature (Test Condition: $\mathrm{I}_{\mathrm{O}}=\mathbf{2 5 0} \mu \mathrm{A}$)

Figure 5: Output Leakage Current vs Load Voltage (Test Condition: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Figure 2: LED Forward Current Threshold vs Ambient Temperature (Test Condition: $\mathrm{I}_{\mathrm{O}}=\mathbf{2} \mathbf{~ m A}$)

Figure 4: Output Leakage Current vs Ambient Temperature (Test Condition: $\mathrm{V}_{\mathrm{O}}=1000 \mathrm{~V}$)

Figure 6: Output Current vs Output Voltage

Figure 7: Output Capacitance vs Load Voltage (Test Condition: $\mathrm{V}_{\text {LOAD }}=\mathbf{0 V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 9: Turn-On Time vs Ambient Temperature (Test Condition: $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$)

Figure 11: Turn-On Time vs Input Forward Current (Test Condition: $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$)

Figure 8: Typical On-Resistance vs Ambient Temperature

Figure 10: Turn-Off Time vs Ambient Temperature (Test Condition: $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$)

Figure 12: Turn-Off Time vs Input Forward Current (Test Condition: $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$)

Figure 13: Switching Time Test Circuit and Waveform

Application Information

ASSR-601 JV/JT is a single-channel Photo MOSFET that is equivalent to 1FormA electromechanical relay (EMR) as shown in Figure 14. It functions like a bidirectional switch with no output power requirement. The input side is LED driven and requires a current limiting resistor (Figure 15). Recommended input forward current is 7 mA to 30 mA .

Figure 14: ASSR-601JV/JT Equivalent Circuit

The input LED is optically coupled through a photodiode stack and a driver circuitry to switch two high-voltage MOSFETs. When current is driven into the LED, the light generates photo current on the photodiode to charge the gate of the MOSFETs, to switch and keep the power device on.

A typical application circuit (Figure 15) shows ASSR-601JV/ JT's input being controlled by the microprocessor to switch the output (high voltage side). ASSR-601JV/JT's galvanic isolation protects the low voltage side of the circuit (input) from the high-voltage side (output).

Pins 9 to 10 and 15 to 16 are internally connected. In routing the PCB layout, either of the pins can be used. Shorting the pins (9 to 10) and (15 to 16) is also acceptable.

Figure 15: Typical Application Circuit

Turn On Time

T_{ON} is influenced by the level of input current. As input current is increased, the T_{ON} becomes shorter. In a situation where T_{ON} needs to be shorter than what the maximum level of input current can achieve, peaking can be implemented as shown in Figure 16.

In this peaking circuit, the LED can be driven by two inputs to achieve shorter T_{ON}. The second input $\mathrm{V}_{\mathrm{IN} 2}$'s duty cycle must set to a lower duty cycle to achieve the peaking effect.

Figure 16: Peaking Circuit and Sample Input Timing

Land Pattern for 8-mm Creepage and Floating Pins

For applications that require PCB creepage of 8 mm between the control and switch sides, the land pattern below can be used.

Figure 17: Land Pattern for 8-mm Creepage

At the output side, in between pins 10 and 15, there are two floating pins. These floating pins are electrically isolated and have no circuit connection to any of the internal circuitry.

Figure 18: Floating Pins

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, the A logo, and R^{2} Coupler are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2017-2019 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Broadcom Limited:

