Current Transducer LT 1005-S/SP3 For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). # 1000 A #### **Electrical data** | I _{PN} | Primary nominal r.m.s. current | | 1000 | | Α | |-----------------------|---|---------------------------|-----------------------|-------------------|----------| | I _P | Primary current, measuring range | | 0 ± 1800 | | Α | | \mathbf{R}_{M} | Measuring resistance | | $\mathbf{R}_{M\;min}$ | $R_{\text{M ma}}$ | ax | | | with ± 15 V | @ ± 1000 A _{max} | 0 | 22 | Ω | | | | @ ± 1800 A _{max} | 0 | 5 | Ω | | I_{SN} | Secondary nominal r.m.s. current | | 333 | | m A | | K _N | Conversion ratio | | 1:3000 |) | | | v c | Supply voltage (± 5 %) | | ± 15 | | V | | I _C | Current consumption | | 25 + I _s | | mA | | V _d | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 6 | | kV | | V _b | R.m.s. rated voltage 1), safe separation | | 1750 | | V | | ž | basic isolation | | | | V | # Accuracy - Dynamic performance data | $\overset{\boldsymbol{x}}{\boldsymbol{e}}_{_{L}}^{_{G}}$ | Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity | | ± 0.4 < 0.1 | | %
% | |--|---|---------------|---------------------|----|-------------------| | I _о
I _{от} | Offset current @ $\mathbf{I}_p = 0$, $\mathbf{T}_A = 25^{\circ}\text{C}$
Thermal drift of \mathbf{I}_O | - 25°C + 70°C | Typ
± 0.3 | | m A
m A | | t _r
di/dt
f | Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | | < 1
> 50
DC 1 | 50 | μs
Α/μs
kHz | #### General data | T_{A} | Ambient operating temperature | - 25 + 70 | °C | |---------------------------|---|-----------|----| | T _s | Ambient storage temperature | - 40 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 17 | Ω | | m | Mass | 600 | g | | | Standards | EN 50155 | | | | | | | Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole 2) With a di/dt of 100 A/µs. #### **Features** - · Closed loop (compensated) current transducer using the Hall effect - Isolated plastic case recognized according to UL 94-V0. ## Special features - $I_p = 0.. \pm 1800 \text{ A}$ - $\mathbf{K}_{N} = 1:3000$ - $V_{C} = \pm 15 (\pm 5 \%) V$ - $T_A = -25^{\circ}C ... + 70^{\circ}C$ - Connection to secondary circuit on M4 threaded studs - Potted - · Railway equipment. ### **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. #### **Applications** - · AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - · Power supplies for welding applications. 070427/3 # **Dimensions** LT 1005-S/SP3 (in mm. 1 mm = 0.0394 inch) ## **Mechanical characteristics** - General tolerance - Fastening - Primary through-hole - Connection of secondary Fastening torque - ±1 mm - 4 holes \varnothing 6.5 mm - 40.5 x 40.5 mm - M4 threaded studs 1.2 Nm or .88 Lb. - Ft. #### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C. - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.