

Current Transducer LT 1005-S/SP3

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1000 A

Electrical data

I _{PN}	Primary nominal r.m.s. current		1000		Α
I _P	Primary current, measuring range		0 ± 1800		Α
\mathbf{R}_{M}	Measuring resistance		$\mathbf{R}_{M\;min}$	$R_{\text{M ma}}$	ax
	with ± 15 V	@ ± 1000 A _{max}	0	22	Ω
		@ ± 1800 A _{max}	0	5	Ω
I_{SN}	Secondary nominal r.m.s. current		333		m A
K _N	Conversion ratio		1:3000)	
v c	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		25 + I _s		mA
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV
V _b	R.m.s. rated voltage 1), safe separation		1750		V
ž	basic isolation				V

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{e}}_{_{L}}^{_{G}}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_p = 0$, $\mathbf{T}_A = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_O	- 25°C + 70°C	Typ ± 0.3		m A m A
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	50	μs Α/μs kHz

General data

T_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	17	Ω
m	Mass	600	g
	Standards	EN 50155	

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

2) With a di/dt of 100 A/µs.

Features

- · Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0.. \pm 1800 \text{ A}$
- $\mathbf{K}_{N} = 1:3000$
- $V_{C} = \pm 15 (\pm 5 \%) V$
- $T_A = -25^{\circ}C ... + 70^{\circ}C$
- Connection to secondary circuit on M4 threaded studs
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

070427/3

Dimensions LT 1005-S/SP3 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque
- ±1 mm
- 4 holes \varnothing 6.5 mm
- 40.5 x 40.5 mm
- M4 threaded studs 1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.