

Current Transducer LT 505-T/SP12

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		800		Α
I _P	Primary current, measuring range		0 ± 1300		Α
\mathbf{R}_{M}	Measuring resistance @		$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	${\bf R}_{\rm M\; max}$	
	with ± 15 V	$@ \pm 800 A_{max}$	0	38.5	Ω
		@ ± 1300 A max	0	13.3	Ω
I _{SN}	Secondary nominal r.m.s. current		200		m A
\mathbf{K}_{N}	Conversion ratio		1:400	00	
V _c	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		24 + I s		m A
$\check{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9.5 ¹⁾		kV
ŭ			1 2)		kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{e}}_{\scriptscriptstyle L}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error		± 0.5 < 0.1		% %
I _O	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 85°C - 40°C 25°C	± 0.2 ± 0.4	1	m A m A m A
t _r di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)		< 1 > 50 DC 1	150	μs Α/μs kHz

General data

T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	28	Ω
m	Mass	1.4	kg
	Standards	EN 50155: 1995	

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

3) With a di/dt of 100 A/µs.

800 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 1300 A$
- $\mathbf{K}_{N} = 1:4000$
- $V_{c} = \pm 15 (\pm 5 \%) V$
- $V_d = 9.5 \text{ kV}^{-1}$
- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Shield between primary and secondary
- Connection to secondary circuit on M4 threaded studs
- Potted
- Customer labeling
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

070427/5

Dimensions LT **505-T/SP12** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque

• Primary through-hole

 Connection of secondary Recommended fastening torque $\pm 0.5 \, \text{mm}$

4 holes Ø 6.5 mm 4 M6 steel screws

5 Nm or 3.69 Lb. - Ft.

or by the primary bar

2 holes Ø 13 mm

M4 threaded studs

1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.