Current Transducer LT 505-T/SP12 For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). ## **Electrical data** | I _{PN} | Primary nominal r.m.s. current | | 800 | | Α | |--------------------------|---|---------------------|---------------------------------------|-------------------------|----------| | I _P | Primary current, measuring range | | 0 ± 1300 | | Α | | \mathbf{R}_{M} | Measuring resistance @ | | $\mathbf{R}_{\mathrm{M}\mathrm{min}}$ | ${\bf R}_{\rm M\; max}$ | | | | with ± 15 V | $@ \pm 800 A_{max}$ | 0 | 38.5 | Ω | | | | @ ± 1300 A max | 0 | 13.3 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 200 | | m A | | \mathbf{K}_{N} | Conversion ratio | | 1:400 | 00 | | | V _c | Supply voltage (± 5 %) | | ± 15 | | V | | I _C | Current consumption | | 24 + I s | | m A | | $\check{\mathbf{V}}_{d}$ | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 9.5 ¹⁾ | | kV | | ŭ | | | 1 2) | | kV | ## Accuracy - Dynamic performance data | $\overset{\boldsymbol{x}}{\boldsymbol{e}}_{\scriptscriptstyle L}$ | Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error | | ± 0.5
< 0.1 | | %
% | |---|--|------------------------------|---------------------|-----|-------------------| | I _O | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ | - 25°C + 85°C
- 40°C 25°C | ± 0.2
± 0.4 | 1 | m A
m A
m A | | t _r
di/dt
f | Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB) | | < 1
> 50
DC 1 | 150 | μs
Α/μs
kHz | #### General data | T _A | Ambient operating temperature | - 40 + 85 | °C | |------------------|---|----------------|----| | T _s | Ambient storage temperature | - 45 + 90 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 85°C | 28 | Ω | | m | Mass | 1.4 | kg | | | Standards | EN 50155: 1995 | | Notes: 1) Between primary and secondary + shield 2) Between secondary and shield 3) With a di/dt of 100 A/µs. # 800 A #### **Features** - Closed loop (compensated) current transducer using the Hall effect - · Insulated plastic case recognized according to UL 94-V0. ### Special features - $I_p = 0 .. \pm 1300 A$ - $\mathbf{K}_{N} = 1:4000$ - $V_{c} = \pm 15 (\pm 5 \%) V$ - $V_d = 9.5 \text{ kV}^{-1}$ - $T_A = -40^{\circ}C ... + 85^{\circ}C$ - Shield between primary and secondary - Connection to secondary circuit on M4 threaded studs - Potted - Customer labeling - Railway equipment. #### **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - · High immunity to external interference - · Current overload capability. #### **Applications** - · AC variable speed drives and servo motor drives - · Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - · Power supplies for welding applications. 070427/5 ## **Dimensions** LT **505-T/SP12** (in mm. 1 mm = 0.0394 inch) ### **Mechanical characteristics** • General tolerance • Transducer fastening Recommended fastening torque • Primary through-hole Connection of secondary Recommended fastening torque $\pm 0.5 \, \text{mm}$ 4 holes Ø 6.5 mm 4 M6 steel screws 5 Nm or 3.69 Lb. - Ft. or by the primary bar 2 holes Ø 13 mm M4 threaded studs 1.2 Nm or .88 Lb - Ft ### Remarks - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C.