

Current Transducer LT 1005-S/SP29

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

_			
	1		
_	OCTE		I Mata
_	CCLI	va	l data

I_{PN}	Primary nominal r.m.s. current			1000			Α		
I _P	Primary current,	measuring rang	je			0 ±	240	0	Α
\mathbf{R}_{M}	Measuring resist	tance @	$T_A = 7$	O°C		T,	_A = 8	5°C	
			$\mathbf{R}_{\mathrm{M}\ \mathrm{min}}$	$\mathbf{R}_{ ext{M max}}$		R	M min	$\mathbf{R}_{\mathrm{Mmax}}$	
	with ± 15 V	@ ± 1300 A _{max}	0	10	@ ± 125	O A 1)	0	10	Ω
		@ ± 1400 A max		7			0	5	Ω
		@ ± 1500 A max	0	4	@ ± 145	O A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A _{max}		10	@ ± 210	O A 1)	3	10	Ω
		@ ± 2300 A _{max}	0	7			3	5	Ω
		$@ \pm 2400 A_{max}$	0	5			3	3	Ω
I _{sn}	Secondary nominal r.m.s. current				200			mΑ	
K	Conversion ratio			1:50	000				
V _c	Supply voltage	(± 5 %)				± 15	24	4	V
Ic	Current consum	nption				30(@	£24	V)+ I s	mΑ
V _d	R.m.s. voltage for	or AC isolation te	st, 50 l	Hz, 1 r	mn	122)			kV
•						1.5 ³⁾			kV
V _a	R.m.s. voltage for	or partial discharg	e extin	ction (@ 10 pC	4.1			kV

Accuracy - Dynamic performance data

$egin{array}{c} \mathbf{x}_{_{G}} \ \mathbf{e}_{_{L}} \end{array}$	Overall accuracy @ $I_{PN_{A}}$ $T_{A} = 25$ °C Linearity error		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 40°C + 85°C	Typ ±0.1	Max ±0.25 ±0.50	mA mA
t _, di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC	150	μs Α/μs kHz

General data

T _Δ	Ambient operating temperature		- 40 + 85	°C
$\mathbf{T}_{s}^{}$	Ambientstoragetemperature		- 50 + 85	°C
$\mathbf{R}_{\mathrm{s}}^{r}$	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω
Ü		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards ⁵⁾		EN 50155	

Notes: 1) I_{Pmax} @ +85°C & customer measuring resistance. 2) Between primary and secondary + internal shield + screened cable. 3) Between secondary and internal shield + screened cable. 4) With a di/dt of 100 A/µs 5) A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_C = \pm 15 ... 24 \text{ V } (\pm 5 \%)$
- **V**_d = 12 kV
- **T**_A = -40°C .. +85°C
- Secondary connection on screened cable and Wago 721-604 connector
- Shield between primary and secondary connected to the cable screening and to 4 pin of connector
- Railway equipment
- · Customer marking.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060829/1

page 1/2

Dimensions LT 1005-S/SP29 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening

• Primary through-hole

• Connection of secondary

± 0.5 mm

4 holes \varnothing 6.5 mm

40.5 x 40.5 mm

Wago 721-604 connector

Remarks

- \bullet ${\bf I}_{\rm S}$ is positive when ${\bf I}_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.